Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

نویسندگان

  • Benjamin Houot
  • Vincent Gigot
  • Alain Robichon
  • Jean-François Ferveur
چکیده

The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight.

Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizin...

متن کامل

Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila

It is well established that perception is largely multisensory; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space; and processed by brain tissue maps that are spatially aligned. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environ...

متن کامل

The consequences of regulation of desat1 expression for pheromone emission and detection in Drosophila melanogaster.

Sensory communication depends on the precise matching between the emission and the perception of sex- and species-specific signals; understanding both the coevolutionary process and the genes involved in both production and detection is a major challenge. desat1 determines both aspects of communication-a mutation in desat1 simultaneously alters both sex pheromone emission and perception in Dros...

متن کامل

Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking.

The fruit fly Drosophila melanogaster is a widely used model organism in studies of genetics, developmental biology and biomechanics. One limitation for exploiting Drosophila as a model system for behavioral neurobiology is that measuring body kinematics during behavior is labor intensive and subjective. In order to quantify flight kinematics during different types of maneuvers, we have develop...

متن کامل

History dependence in insect flight decisions during odor tracking

Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017